SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Stancakova A) ;pers:(Laakso M);pers:(Hansen T.)"

Search: WFRF:(Stancakova A) > Laakso M > Hansen T.

  • Result 1-10 of 12
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Justice, A. E., et al. (author)
  • Genome-wide meta-analysis of 241,258 adults accounting for smoking behaviour identifies novel loci for obesity traits
  • 2017
  • In: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 8
  • Journal article (peer-reviewed)abstract
    • Few genome-wide association studies (GWAS) account for environmental exposures, like smoking, potentially impacting the overall trait variance when investigating the genetic contribution to obesity-related traits. Here, we use GWAS data from 51,080 current smokers and 190,178 nonsmokers (87% European descent) to identify loci influencing BMI and central adiposity, measured as waist circumference and waist-to-hip ratio both adjusted for BMI. We identify 23 novel genetic loci, and 9 loci with convincing evidence of gene-smoking interaction (GxSMK) on obesity-related traits. We show consistent direction of effect for all identified loci and significance for 18 novel and for 5 interaction loci in an independent study sample. These loci highlight novel biological functions, including response to oxidative stress, addictive behaviour, and regulatory functions emphasizing the importance of accounting for environment in genetic analyses. Our results suggest that tobacco smoking may alter the genetic susceptibility to overall adiposity and body fat distribution.
  •  
2.
  • Graff, M., et al. (author)
  • Genome-wide physical activity interactions in adiposity. A meta-analysis of 200,452 adults
  • 2017
  • In: PLoS Genet. - : Public Library of Science (PLoS). - 1553-7404 .- 1553-7390. ; 13:4
  • Journal article (peer-reviewed)abstract
    • Physical activity (PA) may modify the genetic effects that give rise to increased risk of obesity. To identify adiposity loci whose effects are modified by PA, we performed genome-wide interaction meta-analyses of BMI and BMI-adjusted waist circumference and waist-hip ratio from up to 200,452 adults of European (n = 180,423) or other ancestry (n = 20,029). We standardized PA by categorizing it into a dichotomous variable where, on average, 23% of participants were categorized as inactive and 77% as physically active. While we replicate the interaction with PA for the strongest known obesity-risk locus in the FTO gene, of which the effect is attenuated by similar to 30% in physically active individuals compared to inactive individuals, we do not identify additional loci that are sensitive to PA. In additional genome-wide meta-analyses adjusting for PA and interaction with PA, we identify 11 novel adiposity loci, suggesting that accounting for PA or other environmental factors that contribute to variation in adiposity may facilitate gene discovery.
  •  
3.
  •  
4.
  •  
5.
  • Albrechtsen, A., et al. (author)
  • Exome sequencing-driven discovery of coding polymorphisms associated with common metabolic phenotypes
  • 2013
  • In: Diabetologia. - : Springer Science and Business Media LLC. - 0012-186X .- 1432-0428. ; 56:2, s. 298-310
  • Journal article (peer-reviewed)abstract
    • Human complex metabolic traits are in part regulated by genetic determinants. Here we applied exome sequencing to identify novel associations of coding polymorphisms at minor allele frequencies (MAFs) > 1% with common metabolic phenotypes. The study comprised three stages. We performed medium-depth (8x) whole exome sequencing in 1,000 cases with type 2 diabetes, BMI > 27.5 kg/m(2) and hypertension and in 1,000 controls (stage 1). We selected 16,192 polymorphisms nominally associated (p < 0.05) with case-control status, from four selected annotation categories or from loci reported to associate with metabolic traits. These variants were genotyped in 15,989 Danes to search for association with 12 metabolic phenotypes (stage 2). In stage 3, polymorphisms showing potential associations were genotyped in a further 63,896 Europeans. Exome sequencing identified 70,182 polymorphisms with MAF > 1%. In stage 2 we identified 51 potential associations with one or more of eight metabolic phenotypes covered by 45 unique polymorphisms. In meta-analyses of stage 2 and stage 3 results, we demonstrated robust associations for coding polymorphisms in CD300LG (fasting HDL-cholesterol: MAF 3.5%, p = 8.5 x 10(-14)), COBLL1 (type 2 diabetes: MAF 12.5%, OR 0.88, p = 1.2 x 10(-11)) and MACF1 (type 2 diabetes: MAF 23.4%, OR 1.10, p = 8.2 x 10(-10)). We applied exome sequencing as a basis for finding genetic determinants of metabolic traits and show the existence of low-frequency and common coding polymorphisms with impact on common metabolic traits. Based on our study, coding polymorphisms with MAF above 1% do not seem to have particularly high effect sizes on the measured metabolic traits.
  •  
6.
  • Walford, G. A., et al. (author)
  • Genome-wide association study of the modified stumvoll insulin sensitivity index identifies BCL2 and FAM19A2 as novel insulin sensitivity loci
  • 2016
  • In: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 65:10, s. 3200-3211
  • Journal article (peer-reviewed)abstract
    • Genome-wide association studies (GWAS) have found few common variants that influence fasting measures of insulin sensitivity. We hypothesized that a GWAS of an integrated assessment of fasting and dynamic measures of insulin sensitivity would detect novel common variants. We performed a GWAS of the modified Stumvoll Insulin Sensitivity Index (ISI) within the Meta-Analyses of Glucose and Insulin-Related Traits Consortium. Discovery for genetic association was performed in 16,753 individuals, and replication was attempted for the 23 most significant novel loci in 13,354 independent individuals. Association with ISI was tested in models adjusted for age, sex, and BMI and in a model analyzing the combined influence of the genotype effect adjusted for BMI and the interaction effect between the genotype and BMI on ISI (model 3). In model 3, three variants reached genome-wide significance: Rs13422522 (NYAP2; P = 8.87 × 10-11), rs12454712 (BCL2; P = 2.7 × 10-8), and rs10506418 (FAM19A2; P = 1.9 × 10-8). The association at NYAP2 was eliminated by conditioning on the known IRS1 insulin sensitivity locus; the BCL2 and FAM19A2 associations were independent of known cardiometabolic loci. In conclusion, we identified two novel loci and replicated known variants associated with insulin sensitivity. Further studies are needed to clarify the causal variant and function at the BCL2 and FAM19A2 loci. © 2016 by the American Diabetes Association.
  •  
7.
  •  
8.
  • Wood, A. R., et al. (author)
  • A Genome-Wide Association Study of IVGTT-Based Measures of First-Phase Insulin Secretion Refines the Underlying Physiology of Type 2 Diabetes Variants
  • 2017
  • In: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 66:8, s. 2296-2309
  • Journal article (peer-reviewed)abstract
    • Understanding the physiological mechanisms by which common variants predispose to type 2 diabetes requires large studies with detailed measures of insulin secretion and sensitivity. Here we performed the largest genome-wide association study of first-phase insulin secretion, as measured by intravenous glucose tolerance tests, using up to 5,567 individuals without diabetes from 10 studies. We aimed to refine the mechanisms of 178 known associations between common variants and glycemic traits and identify new loci. Thirty type 2 diabetes or fasting glucose-raising alleles were associated with a measure of first-phase insulin secretion at P < 0.05 and provided new evidence, or the strongest evidence yet, that insulin secretion, intrinsic to the islet cells, is a key mechanism underlying the associations at the HNF1A, IGF2BP2, KCNQ1, HNF1B, VPS13C/C2CD4A, FAF1, PTPRD, AP3S2, KCNK16, MAEA, LPP, WFS1, and TMPRSS6 loci. The fasting glucose-raising allele near PDX1, a known key insulin transcription factor, was strongly associated with lower first-phase insulin secretion but has no evidence for an effect on type 2 diabetes risk. The diabetes risk allele at TCF7L2 was associated with a stronger effect on peak insulin response than on C-peptide-based insulin secretion rate, suggesting a possible additional role in hepatic insulin clearance or insulin processing. In summary, our study provides further insight into the mechanisms by which common genetic variation influences type 2 diabetes risk and glycemic traits.
  •  
9.
  • Hribal, M. L., et al. (author)
  • Glucose tolerance, insulin sensitivity and insulin release in European non-diabetic carriers of a polymorphism upstream of CDKN2A and CDKN2B
  • 2011
  • In: Diabetologia. - : Springer Science and Business Media LLC. - 0012-186X .- 1432-0428. ; 54:4, s. 795-802
  • Journal article (peer-reviewed)abstract
    • AIMS/HYPOTHESIS: The aim of this study was to investigate the association of the rs10811661 polymorphism near the CDKN2B/CDKN2A genes with glucose tolerance, insulin sensitivity and insulin release in three samples of white people with European ancestry. METHODS: Sample 1 comprised 845 non-diabetic offspring of type 2 diabetes patients recruited in five European centres participating in the EUGENE2 study. Samples 2 and 3 comprised, respectively, 864 and 524 Italian non-diabetic participants. All individuals underwent an OGTT. Screening for the rs10811661 polymorphism was performed using a TaqMan allelic discrimination assay. RESULTS: The rs10811661 polymorphism did not show a significant association with age, BMI and insulin sensitivity. Participants carrying the TT genotype showed a significant reduction in insulin release, measured by an OGTT-derived index, compared with carriers of the C allele, in the three samples. When these results were pooled with those of three published studies, and meta-analysed with a random-effects model, the T allele was significantly associated with reduced insulin secretion (-35.09 [95% CI 14.68-55.52], p = 0.0008 for CC+CT vs TT; and -29.45 [95% CI 9.51-49.38], p = 0.0038, for the additive model). In addition, in our three samples, participants carrying the TT genotype exhibited an increased risk for impaired glucose tolerance (IGT) compared with carriers of the C allele (OR 1.55 [95% CI 1.20-1.95] for the meta-analysis of the three samples). CONCLUSIONS/INTERPRETATION: Our data, together with the meta-analysis of previously published studies, show that the rs10811661 polymorphism is associated with impaired insulin release and IGT, suggesting that this variant may contribute to type 2 diabetes by affecting beta cell function.
  •  
10.
  • Staiger, H., et al. (author)
  • A candidate type 2 diabetes polymorphism near the HHEX locus affects acute glucose-stimulated insulin release in European populations: results from the EUGENE2 study
  • 2008
  • In: Diabetes. - 1939-327X. ; 57:2, s. 514-7
  • Journal article (peer-reviewed)abstract
    • OBJECTIVE: In recent genome-wide association studies, two single nucleotide polymorphisms (SNPs) near the HHEX locus were shown to be more frequent in type 2 diabetic patients than in control subjects. Based on HHEX's function during embryonic development of the ventral pancreas in mice, we investigated whether these SNPs affect beta-cell function in humans. RESEARCH DESIGN AND METHODS: A total of 854 nondiabetic subjects, collected from five European clinical centers, were genotyped for the HHEX SNPs rs1111875 and rs7923837 and thoroughly characterized by an oral glucose tolerance test (OGTT). To assess glucose-stimulated insulin release, a subgroup of 758 subjects underwent an intravenous glucose tolerance test (IVGTT). RESULTS: SNPs rs1111875 and rs7923837 were not associated with anthropometric data (age, weight, height, BMI, body fat, and waist and hip circumference). After adjustment for center, family relationship, sex, age, and BMI, both SNPs were also not associated with glucose and insulin concentrations in the fasting state and during the OGTT or with measures of insulin sensitivity. Furthermore, HHEX SNP rs1111875 was not associated with insulin release during the IVGTT. By contrast, the minor A-allele of HHEX SNP rs7923837 was significantly associated with higher IVGTT-derived first-phase insulin release before and after appropriate adjustment (P = 0.013 and P = 0.014, respectively). CONCLUSIONS: A common genetic variation in the 3'-flanking region of the HHEX locus, i.e., SNP rs7923837, is associated with altered glucose-stimulated insulin release. This SNP's major allele represents a risk allele for beta-cell dysfunction and, thus, might confer increased susceptibility of beta-cells toward adverse environmental factors.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 12

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view